Case Study: TAMSAT-ALERT
Managing The Risk Of Agricultural Drought In Africa

Ross Maidment, Emily Black, Matthew Young and Dagmawi Asfaw
TAMSAT, University of Reading

Helen Greatrex
IRI, Columbia University

UoR Open in Practice Conference
4th April 2019
TAMSAT* has a long history (since 1980s) of working with African stakeholders (climate, agricultural and finance sectors), founded on it’s operational, Africa-wide satellite-based rainfall product.

Understanding and assessing the risk meteorological hazards pose to agriculture is a common theme across all stakeholders we work with.

How can we use TAMSAT and other data streams in an open framework to support the sectors we routinely work with to address this challenge?

*Tropical Applications of Meteorology using SATellite and ground-based observations
TAMSAT-ALERT (The TAMSAT-Agricultural Early Warning System)
Quantitative risk assessments of agricultural and meteorological drought

TAMSAT-ALERT framework is highly flexible

What is it?
• A monitoring and decision support tool that combines information on current and historical weather and land surface properties.

What it does?
• Makes forecasts to support management of agricultural/meteorological drought.

Why have we developed it?
• To provide early warning of weather-related hazard to a range of decision makers to mitigate their exposure to risk.

How have we developed it?
• Through intensive research in close collaboration with African stakeholders.

Forecast of soil moisture anomaly (3-month lead time)

Probability of metric

Day in season
Open Practices
Adopting different open practices was essential for uptake

Open source code and driving data
Open access publications
No fees or licenses required
Web platform (no login required)

TRUST
TAMSAT-ALERT needs to be a system that users trust enough to pay out money and make decisions

EASE
Products need to be (1) easily reproducible and (2) issued by mandated agencies, to comply with regulations

OUTCOMES
Complete transparency
Simplicity (no “black box”)

UPTAKE
Stakeholders choose TAMSAT-ALERT over less suitable products

Frequent stakeholder engagement

RATIONAL

PRACTICE
Where are we now?
Open science has helped facilitate uptake across Africa

Benefits realised (so far)

- Improved evidence based decision support for 500,000+ farmers in Mozambique and Malawi, because we were able to share all of our code.
- Insurance and forecasts for 2.6 Million farmers across Zambia over 2 years directly as a result of having a transparent process from satellite data to rainfall/soil moisture estimates, which was able to be replicated by the re-insurers and regulators.

- Capacity building in NHMSs
- Planting date decision support
- Decision support for forecast-based finance
- Weather index insurance
Barriers and challenges

- Existing land surface models are proprietary, so had to re-write a drought model.
- High resolution driving data were licensed so had to develop downscaling technologies.
- Data has to be mandated by national agencies, so developed open source code that could be run in-house in Africa.

Lessons learnt

- Licensing models and holding back code limits the applicability of methods and hence take up - even if it is theoretically possible to obtain licenses free of charge. This is because of legal complications of third parties developing value added products that may contravene the original license.
- Transparency during the development process is critical for trust, even if this means exposing mistakes and coding errors.
Open discussion amongst different stakeholders
Example of TAMSAT-ALERT
Managing the risk of agricultural drought in Africa

Risk:
The likelihood of the seasonal rainfall falling below the 30th percentile by the end of the season.

1) Use observations up to present day. [black line]

2) Project/forecast possible futures from present day using data from historical years [grey lines]

3) Compare new projected distribution with climatological distribution
Risk:

The likelihood of the seasonal rainfall falling below the 30th percentile by the end of the season.

1) Use observations up to present day. [black line]

2) Project/forecast possible futures from present day using data from historical years [grey lines]

3) Compare new projected distribution with climatological distribution

4) Derive probability using a threshold [red and blue lines]