The giant space plasma waves that can destroy our satellites

By: Sarah Bentley

Everyday life is becoming more and more dependent on satellite services. From critical communications to forecasting and GPS, we would feel the impact of these lost services quickly. The location and accurate time provided by GPS is vital for navigation, the power grid, computers, phones, financial transactions… even the food we eat in the UK relies on timely transport.  (The BBC recently published an article on the impact of GPS which you can read here.) However, satellites are susceptible to several types of damage through space weather.

The region of space near Earth that is dominated by our planet’s magnetic field is known as the magnetosphere. This provides us and our satellites significant protection from the fast-moving and highly charged solar wind streaming out from the Sun. However, this barrier is highly dynamic as the solar wind constantly buffets us on its way through the solar system. This buffeting causes giant large-scale waves that can bounce around inside the magnetosphere, energising and transporting trapped electrons and posing a hazard to satellites that reside in the radiation belt region. The radiation belts are doughnut-shaped regions that contain many charged particles, trapped by the magnetic field and continually travelling around the Earth.

Figure 1: The Van Allen probes spent seven years observing the radiation belts, the region of energetic trapped particles that are hazardous to satellites. Credits: NASA Goddard’s Scientific Visualization Studio

Actually, there are multiple ways in which space weather can threaten satellite services. High energy particles such as “killer electrons” can penetrate and ionise individual components. Electrostatic charging and the sudden discharges can develop on internal or external surfaces, and communications through the ionosphere can be severely disrupted. However, only some of these are directly related to the giant plasma waves I study – ultra-low frequency or ULF waves. These waves affect the energisation and transport of high-energy electrons. Since satellite operators don’t like to advertise when they have spacecraft failures or the details of those failures, it’s difficult to pinpoint many occasions where these waves were the dominant factor. One well-known example is the failure of the two Telesat spacecraft in 1994, Anik-E1 and E2 [Lam et al, 2012]. We’re aware of this because of the sheer amount of disruption caused; these satellites carried virtually all Canadian television and a significant amount of communications capability. Energetic electrons accelerated by ULF waves damaged the satellites such that it took over six months to regain full services and a hundred thousand customers had to manually re-orient their satellite dishes towards the recovered spacecraft.

Figure 2: Perturbations at the magnetopause can drive waves that propagate inwards, disturbing Earth’s magnetic field. These ULF waves can reflect, bounce or form standing waves that can be measured at the ground. Credit: Sarah Bentley

Technically, we classify “ultra-low frequency” to be below 30 Hz, but I’m mostly interested in the 2-10 mHz range of waves. ULF waves are plasma waves, which means that as well as involving density compressions like a sound (or fluid) wave, they can also incorporate oscillations in the electric and magnetic field. All these oscillations are so large that we measure their period in minutes or hours and their wavelengths in thousands of kilometres – comparable to the radius of the Earth. These waves have their strongest effects when we see sustained wave activity. In this case, repeated electric field pulses can coincide with the motion of the multitude of electrons zipping around the Earth. The electric field exerts a force on the trapped electrons, accelerating them or moving them to different areas of the magnetosphere. So, predicting the occurrence, amplitude and extent of these, is an important aspect of forecasting the radiation belt environment. This would enable satellite operators to take steps to protect their spacecraft, for example by moving the satellite or shutting down vulnerable components.

Unfortunately, predicting the extent of these waves isn’t always that easy. Because they are so big, it’s more computationally feasible to simulate them numerically than other aspects of the magnetosphere. But it’s still very time-consuming, and we can’t run simulations that correspond to a given time in real life because we would need to know what the boundary of the magnetosphere looks like and what the driving solar wind is doing. Typically, we only have a single point measurement in the solar wind near the Earth, which is just not enough to fully describe an environment hundreds of thousands of kilometres wide. An easier approximation we have been making is to simply use an empirical, statistical model which gives median ULF wave power under different solar wind conditions [Bentley et al, 2019]. To our surprise, just using solar wind properties predicted the ULF wave power better than if we assume that we would see the same power from one hour to the next – our model was much more successful than anticipated! We found that the amount of energy seen in these waves changes with different solar wind properties to those we expected. This suggests that the driving of these waves is slightly more complicated than previously realised and that the processing of the magnetosphere may be more important. 

Eventually, we expect that a model like this will improve radiation belt forecasting. This is becoming more important than ever – while the last decade or so has been particularly quiet for the radiation belts, there’s no guarantee this will last. In this time, we have become ever more dependent on satellites, and the way that we use them has made them more susceptible to radiation damage. Spacecraft now often use off-the-shelf rather than custom radiation hard components, and cheaper methods of getting into orbit means that they spend even longer in the radiation belts. So, we hope to understand and predict these giant waves better and discover more about the complex and weird behaviour in the area dominated by the Earth’s magnetic field.


Bentley, S. N., Watt, C. E. J., Rae, I. J., Owens, M. J., Murphy, K., Lockwood, M., & Sandhu, J. K. ( 2019). Capturing uncertainty in magnetospheric ultralow frequency wave models. Space Weather, 17, 599– 618.

Lam, H.‐L., Boteler, D. H., Burlton, B., and Evans, J. ( 2012), Anik‐E1 and E2 satellite failures of January 1994 revisited, Space Weather, 10, S10003, doi:10.1029/2012SW000811.

Horne, R.B., Glauert, S.A., Meredith, N.P., Koskinen, H., Vainio, R., Afanasiev, A., Ganushkina, N.Y., Amariutei, O.A., Boscher, D., Sicard, A., Maget, V., Poedts, S., Jacobs, C., Sanahuja, B., Aran, A., Heynderickx D., and Pitchford, D., (2013), Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST, J. Space Weather Space Clim., 3 (2013) A20, doi: 10.1051/swsc/2013042

This entry was posted in Climate, space weather. Bookmark the permalink.