You are currently browsing the archive for the Health category.

By Stephanie Bull, food scientist, Chemistry Food & Pharmacy

Reading is known as one of the world’s leading centres for the study of food and health. We have outstanding facilities and expertise to study the whole food chain – from climate, weather, soil, farming, food processing, nutrition, to human health and cognition.

Michael Mosley at the University of Reading

So it’s no surprise that TV producers beat a regular path to our door when they want to see the latest scientific research. And none does so quite as innovatively and beautifully demonstrated as BBC Two’s latest science documentary, The Secrets of Your Food

The programme, which has its final episode this week (Friday 10 March) at 9pm on BBC Two, shows the effects food has on our taste buds, brains, and bodies. Alongside the widespread locations and elegant CGI are, of course,  frequent shots of scientific demonstrations carried out at the University of Reading in the Department of Food and Nutritional Science, and in the Department of Chemistry.

In the first episode, We Are What We Eat, I helped presenter Michael Mosley to separate the various components of breast milk in our Food Pilot Plant; investigate how the proteins in egg unfold and denature at different temperatures to create the perfectly cooked egg; demonstrate the production of gas by yeast; and compare fats from different food.

Read the rest of this entry »

Tags: , , , ,

By Dr Andrew Charlton-Perez, Department of Meteorology, University of Reading

Former BBC weather forecaster Bill Giles’ criticism of weather forecasts raises questions about how weather is communicated generally.

Mr Giles has hit out at forecasters for regularly warning the public about the potential consequences of imminent severe weather, arguing they are ‘behaving like nannies’ and could cause the public to become ‘immune’ to the advice.

Rain in Reading – watch out for that puddle!

He added the practice of naming storms had become too frequent, and that forecasters should only advise people about potential dangers for ‘exceptionally severe weather’, which occurs once every few years.

But how much weather information is the right amount for the public? How much do they understand? Could an appreciation of the uncertainty of forecasts actually improve our faith in them?

Research at the University of Reading has shown that not only is the average person able to process more complex weather forecast information, they are likely to make better decisions as a result of the additional information.

Scientists at Reading have therefore begun looking at whether the way weather predictions are presented to the general public can be improved.

Read the rest of this entry »

Tags: , , , ,

By Dr Robert Darby, research data manager 

One of the pillars of all empirical research is that the findings of experiments should not just be one-offs. Anyone with the ability to do so should be able to pick up a research paper, follow the same methods, and come up with the same result.

Yet a recent survey by Nature found that more than 70% of researchers have tried and failed to reproduce another scientist’s experiments. Not only that, but more than half have failed to reproduce even their own experiments. Analyses have reported reproducibility rates for published studies of just 10% and 40%.

News of the so-called ‘reproducibility crisis’ has even reached the BBC, so something must be going on.

So is there really a reproducibility crisis? And if so, what can you do about it?

Open Science may provide answers – and the University of Reading is hosting a free conference on the topic of Open Research this March.

Read the rest of this entry »

Tags: , , , , , ,

By Katie Barfoot – Nutritional Psychology Lab, University of Reading

We all know that fruit and veg is good for us. But some new research from the University of Reading has revealed there is more than meets the eye with the little blue super fruits we call blueberries.

These berries, which are full of a type of nutrient called flavonoids, were shown in two separate studies to improve the positive mood of children and young adults just two hours after consumption.

The two studies, which were conducted by the University’s School of Psychology and Clinical Language Science’s Nutritional Psychology Lab, were run in two populations – healthy young adults aged 18-21, and healthy schoolchildren aged 7-10.

After consumption of a flavonoid-rich blueberry drink, both groups rated their positive mood as being significantly higher than before the blueberry drink consumption.

What’s more, we know it was the flavonoids present in the blueberry drink that made the difference, because no such finding was observed in a group of study participants who consumed a placebo control drink, which was matched for sugars, vitamins and taste.

So how are these flavonoids working?

Read the rest of this entry »

Tags: , , , , ,

Researchers at the University of Reading secured more than £3.9 million in research awards in December.

A total of 21 research projects were given the go-ahead in the last month of 2016, with funders from a variety of sources including government, research councils, charities and business.

Steve Mithen, Deputy Vice-Chancellor and Pro-Vice-Chancellor for research, said: “Congratulations to everyone whose research grants were confirmed during December. I am particularly pleased that Reading has continued to collaborate with a wide range of funders, including the European Horizon 2020 programme.

“I have no doubt that these awards represent an excellent investment in knowledge and will reap great rewards for society in the near future.”

Among those winning funding in December were…

Read the rest of this entry »

Tags: , , , , , ,

By Dr Mark Dallas, Lecturer in Cellular and Molecular Neuroscience, University of ReadingMark Dallas

Our hope as dementia scientists is that these cells could unlock a new avenue of treatments that alters the course of Alzheimer’s disease

The human brain is a complex structure made up of different types of cells. You have probably heard scientists talk about nerve cells or brain cells. These are the cells that are lost in Alzheimer’s disease.

However, there are a similar number of other cell types within the brain, called glial cells. ‘Glial’ comes from the Greek word for glue, as these cells were originally believed to hold the nerve cells together. It is now clear that these cells are highly specialised and vital for brain function.

So what are these cells, and how could they help us find treatments for Alzheimer’s?

Read the rest of this entry »

Tags: , , , ,

‘Food causes cancer’ stories can seem like a standard stock-in-trade. But it’s very often worth examining the science behind the sometimes alarming headlines.

Today there has been lots of attention on acrylamide (see this in The Sun and The Mirror), following warnings from the Food Standards Agency (FSA) that some home-cooked food, such as over-done or burnt toast, fried chips, or well-roasted potatoes, contain more of the potentially carcinogenic chemical.

Chips cooked for longer at higher temperatures contain more acrylamide

Chips cooked for longer at higher temperatures contain more acrylamide

The fundamental research behind this story was spearheaded by the University of Reading back in 2002, when Professor Don Mottram published a paper in Nature showing the process by which acrylamide is created in some cooked food.

Read the rest of this entry »

Tags: , , , , , ,

Dr Julie Hawkins from the School of Biological Sciences discusses recent research which aims to revitalise the hunt for new plant-based medicines.

The earliest medicines were derived from plants, and the first doctors were trained in botany. Today, many societies rely directly on plants and plant knowledge for the health of their people, and a large proportion of pharmaceutical medicines are derived from plants. These pharmaceuticals are often used in ways which reflect traditional use of the species from which they have been derived.

Despite the importance of plants to health, however, there is some controversy as to whether new drugs could be derived from them. Recent developments in drug discovery have made use of robotic screening of compound libraries, whist bioprospecting based on traditional knowledge of plant use has fallen out of favour. Some have argued that useful pharmaceuticals are unlikely to be discovered amongst the ‘riches of the rainforests’. There are issues surrounding recognising the intellectual property of the people discovering and using these plants, which is seen as politically complex, and this discourages investment. In addition, collecting traditionally used plants for screening is time consuming and relies on expertise in botany and ethnobotany. Furthermore, some have argued that plant use may not be indicative of bioactivity, so screening plants used by traditional healers may not yield valuable insights.

Research I have been involved in has recently looked at a novel way of evaluating plants used by traditional healers to address this. We considered the phylogenies, or ‘family trees’ of the plants found in three global biodiversity hotspots. By using DNA sequences to work out how plants in these regions were related, we were able to see whether plants usedby traditonal healers in different regions were closely related to each other. The geographic regions we selected for the study were ones unlikely to have exchanged knowledge about traditional plants – Nepal, New Zealand and South Africa. We found that in these regions the same closely-related plants were used by traditional healers, and interestingly were used to treat the same conditions. 

The fact that evolutionarily related plants are used in different regions, even though the same species are not present, strongly suggests an independent discovery of plants which share the same or similar health properties.  This new finding could revitalise the search for valuable plant medicines. Targeted screening of plants with a high potential for having health benefits would reduce the time investment in collecting species, and also make it easier to negotiate fair and equitable distribution of benefits with the originators of the knowledge.

Dr Julie Hawkins works in the School of Biological Sciences and is interested in the application of molecular marker data to determine identity, parentage and provenance of economically important plant species. This research has recently been published in PNAS: Haris Saslis-Lagoudakis, Vincent Savolainen, Elizabeth M. Williamson, Félix Forest, Steven J. Wagstaff, Sushim R. Baral, Mark F. Watson, Colin A. Pendry & Julie A. Hawkins. ‘Phylogenies reveal predictive power of traditional medicine in bioprospecting’ PNAS (2012). doi:10.1073/pnas.1202242109.


Tags: , , , , , , , , , ,

Dr Laurie Butler is a senior lecturer within the School of Psychology and Clinical Language Sciences. One of his research interests concerns the link between nutrition and cognition.

Over the last five years I have been lucky enough to have been working on research which lies at the boundary between modern psychology, neuroscience and biochemistry. The question itself is a deceptively simple one – to what extent can nutrition slow or even reverse cognitive decline?

In my blog I hope to give you a sense of some of the issues, findings and challenges involved.


Factors affecting likelihood of cognitive decline

We know that there are a host of factors which influence our rate of cognitive decline. Aside from age, we know that IQ as a child and education levels are important predictors, as are various socio-demographic and genetic factors. Interestingly, we also know that cardiovascular function and physical fitness are important as is keeping mentally fit (eg doing crosswords, sudokus etc.). What is becoming increasingly apparent though is that what we eat and drink is important too. I’m going to focus here on Omega 3 fatty acids and flavonoids.

Omega 3 fatty acids

Omega 3 fatty acids found in large quantities in oily fish are frequently in the news and a lot of people take fish oil supplements. Omega 3 fatty acids are interesting because they are highly concentrated in the brain and they have anti-inflammatory, antioxidant and neuroprotective properties. Interestingly, although the recommended daily intake for a healthy, non-pregnant adult is around two portions per week (140g per portion), current intake is only 0.3 of a portion with 70% of adults eating no oily fish at all. Having said that, if everyone on the planet met this recommendation that we would have to double the available fish oil (the topic for another blog…).


What do tea, fruit and vegetables, citrus fruits, berries, red wine and cocoa (among others) have in common? They all contain flavonoids of one type or another. There are over 6,000 different flavonoids, a number of which have been shown to cross the blood brain barrier, affect proteins involved in neuronal growth/survival, and stimulate new neurons. We do a lot of work on flavonoids here at Reading – for example, if you read a report in the media on blueberries and cognitive performance it is likely to be us!

Measuring cognitive function

At its simplest, as psychologists we ask whether intakes of omega 3 or flavonoids have an effect on cognitive function. How do we do this though? One relatively quick way is to use a global measure of cognitive function. One example is called the Mini Mental State Examination or MMSE which poses a series of short questions on language, memory and orientation. However, it is not really very sensitive – it might help to determine if someone has pathological cognitive decline but is not so sensitive to decline in the normal range.

So you need to use more sensitive tests for age-related decline. The good news is that some cognitive functions such as general knowledge, verbal ability and some numerical abilities are relatively preserved as we age.  However, some cognitive functions are more sensitive to decline than others. For example, speed of processing (ie the speed at which cognitive functions can be carried out) actually starts to decline in your 30s.

Experimental designs

OK so we have our nutrients and we have some cognitive tests – what do we do next?  Well there are two major types of experimental design.  The first is an observational design, whereby, for example, I might invite a large group of people to complete a questionnaire designed to assess dietary flavonoid levels and measure cognitive performance. The problem with this sort of design is that you cannot say anything about cause and effect (ie that flavonoids are definitely causing the improvement in cognition). To do this you need to use a randomised controlled trial design (RCT) whereby some people are allocated to a control condition and some to your nutritional intervention condition.

The evidence

So how good is the available evidence for the effects of flavonoids and omega 3 fatty acids on cognition? Well at the moment it seems to depend on the type of design you look at.

For observational designs, there is some really compelling data. For example, a Norwegian study by Nurk et al (2007) showed that older adults with a higher daily fish intake (up to around 80g per day). displayed better cognitive performance relative to those with lower fish intake. Similarly, for flavonoids, Letennuer et al (2007) found that a group of older adults with the highest flavonoid levels in their diet (up to 36mg) showed the best MMSE outcome at baseline and also showed the slowest cognitive deterioration over a ten-year period.

However, when using randomised controlled trial designs, the evidence gets more patchy.  Of the available omega 3 fatty acid studies, most have failed to detect effects on cognitive function in healthy or abnormal aging to date.  For flavonoids, there is some RCT evidence of benefits, particularly the benefits of blueberries on pre-dementia patients (Krikorian et al 2010). In our work, we have shown some beneficial effects of single acute doses of cocoa and blueberries on cognitive performance in both young and older adults.

So as far as flavonoids and omega 3 fatty acids are concerned the jury is out…more data needed.

Tags: , , , , ,

Newer entries »