

Investigation of Short Term Load Forecasts of Low Voltage Level Substation Feeders and the Effects of Weather
Stephen Haben ${ }^{1}$, Siddharth Arora ${ }^{1}$, Georgios Giasemidis ${ }^{2}$, Tamsin Lee ${ }^{1}$, Florian Ziel 3
${ }^{1}$ Mathematical Institute, University of Oxford, UK
${ }^{2}$ CountingLab Ltd., Reading, UK
${ }^{3}$ House of Energy Markets and Finance, University Duisburg-Essen, Germany

LV workshop
4th LV workshop: Demand analytics and control for networks support, Reading, UK

LV Load Data

- 100 Low Voltage Feeders in Bracknell, UK
- 83 of 100 purely residential, 8-109 customers (average 45)
- Hourly data: $31^{\text {st }}$ March 2014 to $22^{\text {nd }}$ November 2015
- Temperature and wind chill (hourly) forecasts/actuals. Begin 7am up to 96 hours ahead.

Challenges

- Data volatile (and less predictable) compared to higher voltages
- Varied number/types customers
- Impacts of temperature not fully understood
- Behaviour varies clearly over the day

Weather Forecasts: Properties

	Weather Variables	
Property	Temperature	Wind Chill
1 Day MAPE (\%)	12	38
4 Day MAPE (\%)	24	49
Correlation Load	-0.44	-0.44
Adj R^{2} w/ load	0.23	0.24

- Forecast accuracy over testing period (9 to 16\% Temp).

Required and open characteristic of LV load

- Seasonalities: Daily, weekly and annual
- Autoregressive effects
? Model for separate hours vs. full model
? Trend
? Temperature effect

Weekly Load Profiles

Annual drofile

Autocorrelation structure of Load

Autocorrelation structure of Load (removing weekly profile)

Model 1: Seasonal Model

- Each hour is modelled separately $\Rightarrow 24$ smaller models $(h=1+(t-1) \bmod 24)$

$$
\begin{equation*}
L_{t}=a_{0}^{h}+a_{1}^{h} d(t)+\sum_{k=1}^{7} a_{2+k}^{h} \mathcal{K}_{k}(t)+\sum_{p=1}^{3} \mathcal{S}_{p}^{h}(t) \tag{1}
\end{equation*}
$$

where
$\Rightarrow d(t)=\left\lfloor\frac{t}{24}\right\rfloor+1$ is the trend component (day of trial set)

- $\mathcal{K}_{k}(t)$ are dummy variables for the days of the week.
- $\mathcal{S}_{p}^{h}(t)$ is a seasonal term

$$
\begin{equation*}
\mathcal{S}_{p}^{h}(t)=b_{p}^{h} \sin \left(\frac{(2 \pi p d(t))}{365}\right)+c_{p}^{h} \cos \left(\frac{(2 \pi p d(t))}{365}\right) \tag{2}
\end{equation*}
$$

Model 1: Seasonal Model with temperature effects

Seasonal model with Weather terms:

$$
\begin{equation*}
L_{t}=a_{0}^{h}+a_{1}^{h} d(t)+\sum_{k=1}^{7} a_{2+k}^{h} \mathcal{K}_{k}(t)+\sum_{p=1}^{3} \mathcal{S}_{p}^{h}(t)+\sum_{q=1}^{3} f_{q}^{h} T(t)^{q}, \tag{3}
\end{equation*}
$$

for some forecasted (or actual) weather variable $T(t)$ at time t .

- Point estimate generated from median quantile regression.
- We call this method ST when trend used and $\mathbf{S n T}$ without trend.
- Other methods tried
- More seasonal terms
- Weekend effect only
- Mean (faster) vs. Median (better)

Model 2: Autoregressive Methods

- One time series is modelled \Rightarrow one big model

Solve residual time series $r_{t}=L_{t}-\mu_{t}$, for mean profile μ_{t}

$$
\begin{equation*}
r_{k}=\sum_{k=1}^{p} \phi_{k}\left(r_{t-k}\right)+\epsilon_{t} \tag{4}
\end{equation*}
$$

- Autoregressive parameters $\phi_{1}, \ldots, \phi_{p}$ estimated using Burg method (Yule-Walker equation based \Rightarrow stationary solution)
- Optimal order p by minimising AIC (Akaike Information Criterion) for $p \in\left\{0, \ldots, p_{\max }=15 S\right\}, S=24$
- Mean μ_{k} estimated by OLS (ordinary least squares)

Model 2: Autoregressive Methods

Mean Model 1: Simple weekly average

$$
\begin{equation*}
\mu_{t}=\sum_{j=1}^{7 S} \beta_{j} \mathcal{W}_{j}(t) \tag{5}
\end{equation*}
$$

where

$$
\mathcal{W}_{j}(t)= \begin{cases}1, & t \quad \bmod 168=j \\ 0, & \text { otherwise }\end{cases}
$$

representing the hour j of the week.

- Extra term added to incorporate weather forecast/actuals
- We denote the model by $\mathbf{A R W D}\left(p_{\text {max }} \mid n\right)$ (n in-sample data size)

Model 2: Autoregressive Methods

Mean Model 2:

$$
\begin{equation*}
\mu_{t}=\sum_{j=1}^{7 S} \beta_{j} \mathcal{W}_{j}(t)+\sum_{k=1}^{K} \alpha_{1, k} \sin (2 \pi t k / A)+\alpha_{2, k} \cos (2 \pi t k / A) \tag{6}
\end{equation*}
$$

with $A=365.24 \times 24, K=2$.

- We denote the model by $\operatorname{ARWDY}\left(p_{\max } \mid n\right)$.
- Extra term added to incorporate weather forecast/actuals.

Model 3: Moving averages

- p-Week moving average:

$$
\begin{equation*}
L_{t}=\frac{1}{p} \sum_{k=1}^{p} L_{k-168 k}+\epsilon_{t} \tag{7}
\end{equation*}
$$

The model is denoted by 7SAV p weeks.

- Special case: Weekly moving average last week as this (7SAV1weeks):

$$
\begin{equation*}
L_{t}=L_{k-168} \tag{8}
\end{equation*}
$$

We will denote this special case as $\mathbf{L W}$.

Forecasting study

- Forecast Period: $1^{\text {st }}$ Oct 2015 to $22^{\text {nd }}$ Nov 2015.
- 1 to 96 (4 days) hours ahead forecast, rolling window.
- Forecast starts at 8am
- Errors measure

$$
\begin{equation*}
M A P E=\frac{100}{N} \sum_{t=1}^{N}\left|\frac{A_{t}-F_{t}}{A_{t}}\right| \tag{9}
\end{equation*}
$$

- Test with real weather forecasts or actuals (Ex-ante vs Ex-post)

Errors Average

	MAPE \%		
	Weather Variables		
Method	None	Forecast	Actual
7SAV4Weeks	15.72	-	-
LW	19.11	-	-
ARWD(15S \mid 365S) Temp	14.65	20.17	20.03
ARWDY(15S \mid 365S) Temp	$\mathbf{1 4 . 6 4}$	15.36	15.16
ST (Temp)	15.44	15.47	15.47
SnT (Temp)	15.77	15.79	15.80
ST (WChill)	15.44	15.47	15.47
SnT(WChill)	15.77	15.80	15.80

Errors Day to Day

Figure : Comparison of Errors (MAPE) for different horizons including those using temperature forecasts.

Results

Figure : Comparison of Errors (MAPE) for different horizons.

The temperature is correlated with the 'season'

Figure : Linear dependence of season and temperature

Temperature analysis for feeder 1:

$$
\operatorname{load}_{t}=\beta_{0}+\beta_{1} \text { temperature }+\varepsilon_{t}
$$

	Estimate	Std. Error t value	$\operatorname{Pr}(>\|t\|)$		
(Intercept)	29.89992	0.27637	108.186	$<2 e-16$	***
temperature -0.17087	0.02321	-7.361	$2 e-13$	***	

 if normality and iid assumption holds:
 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05
0.1
1

- t -value of season model much larger.
- p-values not reliable

$$
\begin{aligned}
& \operatorname{load}_{t}=\beta_{0}+\beta_{1} \text { season }_{t}+\varepsilon_{t} \\
& \text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|) \\
& \text { (Intercept) } 28.1085 \quad 0.1266222 .04<2 e-16 \text { *** } \\
& \text { season -4.6424 0.1790-25.94 <2e-16 *** }
\end{aligned}
$$

T -values for season and temperature model for all feeders

$\operatorname{load}_{t}=\beta_{0}+\beta_{1}$ temperature $_{t}+\beta_{1}$ temperature $_{t}^{2}+\beta_{1}$ temperature $_{t}^{3}+\varepsilon_{t}$

```
lm(formula = load ~ temperature + I(temperature^2) + I(
        temperature^3))
                        Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrrl} 
(Intercept) & 29.0085173 & 0.4128066 & 70.271 & \(<2 e-16\) & *** \\
temperature & 0.3491895 & 0.1256890 & 2.778 & 0.00548 & ** \\
I (temperature^2) & -0.0575065 & 0.0122314 & -4.702 & \(2.62 \mathrm{e}-06\) & *** \\
I (temperature^3) & 0.0016600 & 0.0003495 & 4.750 & \(2.07 e-06\) ***
\end{tabular}
```

- small p-values for all temperature effects

Errors and substation demand

Summary

- Short term forecasts (up to 4 days ahead)
- Weather (Temperature/Wind Chill) minimal impact on the forecast accuracy
\rightarrow seasonal deterministic components more relevant
- Simple 4 week average a competitive benchmark
- Autoregressive model with seasonal model best forecasting accuracy
- Strong relationship between size of feeder and relative accuracy

Outlook: Probabilistic forecasting results (ARWDY type model)

Future

- Further development of probabilistic methods
- More sophisticated investigations into weather impact
- Investigating of public holidays and clock-change effects
- Investigate the aggregation relationship
- Rolling and real time forecasts

