Next week is ‘Open Access Week’ , and to celebrate this, all Royal Society journal content will be completely free to access from Friday 21 October until 6 November.
Solar eclipses rarely cross populated regions, but provide great opportunities both for science and science outreach when they do. The recent 20 March 2015 solar eclipse tracked across the Atlantic, giving substantial solar radiation changes in the UK and Iceland, and totality in the Faeroes. This Theme Issue of the Philosophical Transactions of the Royal Society brings together a unique series of studies on effects of eclipses on the weather, placed in the context of societal responses to eclipses. Professor Giles Harrison from this department was joint lead editor on the issue, and the journal includes contributions from many members and ex-members of the Department of Meteorology at the University of Reading on a very wide variety of topics.
Investigating effects of eclipse-induced weather changes (e.g. in surface air temperatures, wind and cloud amount) has a long history, usually exploiting observations made during the eclipse for comparison with comparable non-eclipse conditions the day before or after. New approaches to study the weather-related changes are now possible, employing high resolution numerical models of the atmosphere in which an eclipse can be turned on or off at will, combined with the extensive coverage of good quality amateur and professional weather data available. This issue includes work analysing surface, balloon and satellite observations, alongside high resolution numerical modelling studies. In doing so it defines a new interdisciplinary research area in eclipse weather, closely focussed in scope, but diverse in the work it contains.
The contents of this special issue, available online (FREE Open Access 21 October to 6 November) and in print, is given below:
Introduction: The solar eclipse: a natural meteorological experiment: RG Harrison, E Hanna
Symbolism and discovery: eclipses in art: I Blatchford
Atmospheric changes from solar eclipses: KL Aplin, CJ Scott, SL Gray
Meteorological effects of the solar eclipse of 20 March 2015: E Hanna, J Penman, T Jónsson, GR Bigg, H Björnsson, S Sjúrðarson, MA Hansen, J Cappelen, RG Bryant
On the variability of near-surface screen temperature anomalies in the 20 March 2015 solar eclipse: MR Clark
Satellite observations of surface temperature during the March 2015 total solar eclipse:
E Good
Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015: S Burt
Effects of the March 2015 solar eclipse on near-surface atmospheric electricity: AJ Bennett
Terrestrial atmospheric responses on Svalbard to the 20 March 2015 Arctic total solar eclipse under extreme conditions: JM Pasachoff, MA Peñaloza-Murillo, AL Carter, MT Roman
Coordinated weather balloon solar radiation measurements during a solar eclipse: RG Harrison, GJ Marlton, PD Williams, KA Nicoll
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse: GJ Marlton, PD Williams, KA Nicoll
Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona: CJ Scott, J Bradford, SA Bell, J Wilkinson, L Barnard, D Smith, S Tudor
Eclipse-induced wind changes over the British Isles on 20 March 2015: SL Gray, RG Harrison
Numerical simulations of the impact of the 20 March 2015 eclipse on UK weather: PA Clark
The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach: AM Portas, L Barnard, C Scott, RG Harrison
The National Eclipse Weather Experiment: an assessment of citizen scientist weather observations: L Barnard, AM Portas, SL Gray, RG Harrison
Phil. Trans. R. Soc. A 2016 374: access content online